Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723.

نویسندگان

  • Mian Cai
  • Luying Xun
چکیده

The first three enzymes of the pentachlorophenol (PCP) degradation pathway in Sphingobium chlorophenolicum (formerly Sphingomonas chlorophenolica) ATCC 39723 have been characterized, and the corresponding genes, pcpA, pcpB, and pcpC, have been individually cloned and sequenced. To search for new genes involved in PCP degradation and map the physical locations of the pcp genes, a 24-kb fragment containing pcpA and pcpC was completely sequenced. A putative LysR-type transcriptional regulator gene, pcpM, and a maleylacetate reductase gene, pcpE, were identified upstream of pcpA. pcpE was found to play a role in PCP degradation. pcpB was not found on the 24-kb fragment. The four gene products PcpB, PcpC, PcpA, and PcpE were responsible for the metabolism of PCP to 3-oxoadipate in ATCC 39723, and inactivational mutation of each gene disrupted the degradation pathway. The organization of the pcp genes is unusual because the four PCP-degrading genes, pcpA, pcpB, pcpC, and pcpE, were found to be located at four discrete locations. Two hypothetical LysR-type regulator genes, pcpM and pcpR, have been identified; pcpM was not required, but pcpR was essential for the induction of pcpB, pcpA, and pcpE. The coinducers of PcpR were PCP and other polychlorinated phenols. The expression of pcpC was constitutive. Thus, the organization and regulation of the genes involved in PCP degradation to 3-oxoadipate were documented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conversion of Sphingobium chlorophenolicum ATCC 39723 to a hexachlorobenzene degrader by metabolic engineering.

The gene cassette (camA+ camB+ camC) encoding a cytochrome P-450cam variant was integrated into the nonessential gene pcpM of the pentachlorophenol degrader Sphingobium chlorophenolicum ATCC 39723 by homologous recombination. The recombinant strain could degrade hexachlorobenzene at a rate of 0.67 nmol.mg (dry weight)-1.h-1, and intermediate pentachlorophenol was also identified.

متن کامل

Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723.

Pentachlorophenol (PCP), a highly toxic anthropogenic pesticide, can be mineralized by Sphingobium chlorophenolicum, a gram-negative bacterium isolated from PCP-contaminated soil. However, degradation of PCP is slow and S. chlorophenolicum cannot tolerate high levels of PCP. We have used genome shuffling to improve the degradation of PCP by S. chlorophenolicum. We have obtained several strains ...

متن کامل

Maintenance role of a glutathionyl-hydroquinone lyase (PcpF) in pentachlorophenol degradation by Sphingobium chlorophenolicum ATCC 39723.

Pentachlorophenol (PCP) is a toxic pollutant. Its biodegradation has been extensively studied in Sphingobium chlorophenolicum ATCC 39723. All enzymes required to convert PCP to a common metabolic intermediate before entering the tricarboxylic acid cycle have been characterized. One of the enzymes is tetrachloro-p-hydroquinone (TeCH) reductive dehalogenase (PcpC), which is a glutathione (GSH) S-...

متن کامل

The Whole Genome Sequence of Sphingobium chlorophenolicum L-1: Insights into the Evolution of the Pentachlorophenol Degradation Pathway

Sphingobium chlorophenolicum Strain L-1 can mineralize the toxic pesticide pentachlorophenol (PCP). We have sequenced the genome of S. chlorophenolicum Strain L-1. The genome consists of a primary chromosome that encodes most of the genes for core processes, a secondary chromosome that encodes primarily genes that appear to be involved in environmental adaptation, and a small plasmid. The genes...

متن کامل

Sphingobium Chlorophenolicum Dichlorohydroquinone Dioxygenase (PcpA) Is Alkaline Resistant and Thermally Stable

Dichlorohydroquinone dioxygenase (PcpA) is the ring-cleavage enzyme in the PCP biodegradation pathway in Sphingobium chlorophenolicum strain ATCC 39723. PcpA dehalogenates and oxidizes 2,6-dichlorohydroquinone to form 2-chloromaleylacetate, which is subsequently converted to succinyl coenzyme A and acetyl coenzyme A via 3-oxoadipate. Previous studies have shown that PcpA is highly substrate-spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 184 17  شماره 

صفحات  -

تاریخ انتشار 2002